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Instabilities of finitsamplitude gravity waves 
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A study of the instabilities of finite-amplitude periodic gravity waves has extended 
recent deep-water results to finite depth. Resu1t.s are presented for three depths, one 
greater and two less than the depth for st,nbilization of two-dimensional long-wave 
perturbations. The results include those instabilities found by perturbation methods 
as well as some new types of instability. 

1. Introduction 
It is well known that a periodic wave train on deep water (Stokes wave) is unstable 

to modulational perturbations (Benjamin & Feir 1967; Zakharov 1968). A two- 
dimensional analysis of infinitesimal perturbations of the Stokes wave in the arbitrary 
depth case shows a similar instability, provided that the fluid is not too shallow 
(Whitham 1967; Benjamin 1967). Analysis in three dimensions based on Whitham’s 
theory (Hayes 1973) and the multiple scaling technique (Zakharov & Kharitonov 
1970; Benney & Roskes 1970) indicates the dominant instability of the finite-depth 
periodic wave train is three-dimensional, and the instabilities persist to arbitrarily 
shallow depths. 

In  this paper, we give details of a numerical investigation of the stability of finite- 
amplitude, finite-depth water waves to infinitesimal three-dimensional perturbations 
of arbitrary wavelength. The formulation of the problem and method of solution is 
similar to the study of the infinite-depth case (McLean et al. 1981; McLean 1981). 

The instabilities found are qualitatively similar to the deep-water case : bands of 
instability are associated with resonances deduced from the linear dispersion relation. 
For small to moderate amplitudes, the lowest-order resonance is dominant, and 
corresponds to the instabilities previously found by perturbation methods. These 
instabilities have been investigated by Bryant (1978) with a formulation similar to 
the present study. Since he kept only the quadratic terms in the equations of motion, 
only the lowest-order resonance was found. Using.the full equations, we have found 
that the instability associated with the next-order resonance dominates for sufficiently 
steep waves. 

Results are presented for three depths and a range of wave steepness up to about 
90 yo of the limiting wave amplitudes. 
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FIGURE 1.  Resonance curves from the linear dispersion relation. N is the order 

of tho resonance (equation ( 1 1 ) ) .  (a) kh = 2.0; ( h )  kh = 0.5. 

2. Governing equations 
The analysis proceeds along the lines of the deep-water case (McLean l9Sl),  with 

modifications for finite depth. We consider two-dimensional, steadily propagating 
surface gravity waves of permanent form on an inviscid, irrotational, incompressible 
fluid of finite depth. In a frame of reference moving with t’he wave, the governing 
equations are 

- (1)  
$z = 0. ( 2  = - h ) ,  

V 2 $ = 0  ( - h < z < i i ) , }  

where $(z, z )  is the velocity potential, z = q(x) is the free surface, h is the mean depth, 
and B is the Bernoulli constant. Without loss of generality, the gravitational accelera- 
tion is one and the unperturbed wave has wavelength h = 277. These equations admit 
two-dimensional steady solutions of the form : 

- ~ ( x )  = X Ancos(nx), 
n =  1 

- m cosh n(z + h) 
$(x, z )  = - Cx + C B, sin (nx) 

n=l sinh (nh) ’ 

where the Fourier coefficients A,, B, and the ‘phase speed’ C are functions of the 
wave steepness ka and the Bernoulli constant B (or equivalently the mean depth h), 
whereaisone-halfthecrest-to-trough height, and k i s  themavenumber (k = 2n/h = 1). 
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FIGURE 1 (a). For legend see p. 332. 

We consider the stability of these two-dimensional steady waves t,o an infinitesimal 
three-dimensional disturbance. Let 

7 = f +q ' ,  q5 = $+$', 
where the perturbations f(x, y, t ) ,  $'(x, y, x ,  t )  satisfy 7' < f ,  4' < 7. In the frame of 
reference moving with the steady wave, the linearized equations are 

(4) 

where the equations are to be satisfied on the unperturbed free surface. The normal 
modes of t,he disturbance have the form : 

I $4 + r f  + 7 x 4 ;  + $24; + ($X$XZ + $2$2#) 1' = 0, 

7; + 7x7: + f x  $: + ( ? X Z f Z  - $22) 7' - = 09 

wherep and q are arbitrary real numbers. The physical disturbance corresponds to the 
real part of (5). Substitution of ( 5 )  int'o the linearized equations (4) yields an eigen- 
value problem for u: 

(1 + $ x ~ , Z + ~ ~ $ 2 ~ ) ~ u , e i ~ x + ~ [ i ( p + j ) $ x c o s h  k,(f+h) 
b, eijz 

sinh k, h 

- -  

cosh k,(f + h) +&k,sinhk - h -- - i ~ ~ ; b , e i j x  + sinh kj h ' 

X(gZzf, - $,, + i ( p  +j) 7,) ajeijx + X[ i (p  +j) f ,  cosh k,(f + h) 
b, eifz 

sinh kj h 
- kj sinh kj(7 + h) ]  - = iuX:ajeijz, 



334 J. W. McLeun 

where kj = 141 = [ (p+j) ,+q2]*.  These equations are to be satisfied for 0 c x < 2n. 
Instability corresponds to 9c-r > 0. 

For ka = 0: the eigenvalues and corresponding eigenfunctions of (6) are: 

where C = (tanh h)i .  Nonlinear effects (ka > 0) can lead to instability if these eigen- 
values agree for different n and the same p and q in the linear approximation: 

c-r&(P,d = c-r$*(Pd (8) 

for some [n,, nz] and choice of the propagation sense. As in the deep-water case, the 
solution to (8) can be divided into two classes: 

Class 11, 

Here m is a positive integer. Class I curves are symmetric about p = 0, q = 0, while 
class I1 curves are symmetric about p = &, q = 0 (figure 1) .  

Alternatively, the coincidence of eigenvalues can be interpreted as a resonance of 
two infinitesimal waves with a ' carrier' wave, for which the resonance condition is 

W, = -w2+Nw0,  kl = k2+Nk0, (11)  

where k, = ( l , O ) ,  k, = ( p + N , q ) ,  k, = ( p , q )  and w, = [k,tanh(k,h)]i. Class I, 
m = 1 corresponds to N = 2; class 11, m = 1 corresponds to N = 3. For deep water, 
McLean et al. 1981 (see also McLean 1981) demonstrated that these resonances 
produce instability bands for finite amplitude. 

3. Numerical treatment 
The computations consist of two parts, calculation of the unperturbed wave 7, $and 

subsequent solution of the eigenvalue problem. To calculate the unperturbed wave, 
i t  proved convenient to solve for .2: and z as functions of the velocity potential 4 and 
stream function $. In these variables, the unperturbed flow can be expressed as: 
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The bottom is the streamline + = $o, and the free surface is $ = 0. The free surface 
boundary condition may be expressed as (Longuet-Higgins 1978) : 

where ym = coth ( -m+o/C). Substitution of (12 )  into (13 )  and (14 )  yields: 

The mean depth is given by 

Equations ( 1 5 )  are quadratic in the unknowns Hn as in the deep-water case. The right- 
hand side of (16 )  introduces a more complicated nonlinear term for finite depth. The 
nonlinear system constructed from (15) ,  (16) ,  and an equation specifying the wave 
amplitude is truncated at L Fourier modes and solved by Newton's method. The 
contribution to the Jacobian from the right-hand side of (16 )  is 

Since the integrands of these terms nre periodic, they may be evaluated accurately 
using the trapezoidal rule (Isaacson & Keller 1966). The truncation L is chosen so the 
last coefficient is sufficiently small ( 10-l2 for most runs). The truncat,ion was varied 
between 50 and 350 depending on the wave steepness. Twenty-five points were 
generally adequate to evaluate the integrals in (16 )  and (18) .  

To compute the st,eady wave, we fix the unperturbed fluid depth d = - @o/C. This 
represents the depth of a uniform stream moving with velocity C which has the same 
mass flux as the steady wave. For a given d ,  the wave is computed over a range of 
wave amplitudes up to about 90 yo of the limiting wave steepness (as given by Cokelet 
1977). The computational economics of performing Newton's method on large systems 
prevents us from continuing to steeper waves, which require more than 350 Fourier 
modes to describe the wave adequately. The present computations agree with pre- 
viously published results. The decision to use d rather than the mean depth h was 
motivated by ease of computation and to allow comparison with Cokelet, who used 
the same parameter. Variations of h with ka for fixed d do not amount to more than a 
few per cent for our computation, see table 1. 
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d = 2.0, highest wave: ka = 0.425 
\ 

Unperturbed wave Class I instability Class I1 instability 
A A L 

1 ,  

ka L 1cI C2 (dep) P q Wcr 9 U  p q Wa f a  
0.10 50 6 0.974883 2.005125 0.21 0.15 0.0877 3.19~ 0.5 1.54 0.0 7.24~ lo-' 
0.20 50 8 1*008101 2.019723 0.31 0.17 0.1220 1.13 x 0.5 1.43 0.0 6.34~ lo-' 
0.30 100 12 1.065604 2.041079 0.40 0.14 0.1342 2.39 x 0.5 1.21 0.0 2.65~ lo-* 
0.35 200 20 1*104017 2.052335 0.46 0.08 0.1268 3.31 x 0.5 0.99 0.0 5.23~ lo-* 
0.39 300 35 1.137932 2.059619 0.62 0.00 0.1055 4.60~ 10-2 0.5 .0.68 0.0 1.01 x lo-' 

d = 1.0, highest wave: ka = 0.325 

Unperturbed wave Class I instability Class I1 instability 
A A A 
7 v , r  

ka L M Ca (dep) p q Wu 90. p q W a  9 a  
0.10 50 6 0.781727 1.006339 0.28 0.19 0.0618 2.34~ 0.5 0.99 0.0 2.04~ lo-' 
0.20 100 12 0.839925 1.022771 0.42 0.24 0.0964 9.54~ 0.5 0.90 0.0 1.80~ lo-' 
0.29 300 35 0.919308 1.038987 0.55 0.19 0.0888 3.07 x 0.5 0.02 0.0 7.60~ lo-' 

d = 0.5, highest wave: ka = 0.186 

Unperturbed wave Class I instability Class I1 instability 
A 

I 
A 

V \r 
kn L M C2 (dep) p q WU 9 U  p q W a  9 a  
0.10 100 15 0.531461 0.508233 1.16 0.00 0.2273 4.44~ 0.5 0.55 0.0 8.77 x 
0-16 300 35 0.599622 0.515655 0.57 0.23 0.0763 1.45~ 0.5 0.50 0.0 3.76~ lo-' 

TABLE 1. Maximum growth rate as a function of wave steepness; 
(dep) is the mean depth. 

Once the unperturbed wave has been calculated, we return to Cartesian co-ordinates 
to construct the eigenvalue problem. The perturbations (5) are truncated at  M 
Fourier modes, and the unknown coefficients {aj, b j }  are chosen to satisfy (6) at  2 M +  1 
points, spaced in equal arclength increments between adjacent crests of the un- 
perturbed wave. The coefficients of (6) are computed from (12) by a straightforward 
change of variables. The resulting system of order 4M + 2 is of the form: 

(A-BB)u = 0, (19) 

where u = { u - ~ . .  .a,,, b,. . and the matrices A and B are complex functions of 
p ,  q, and the unperturbed wave (which is a function of ka and d ). The eigenvalues u 
are obtained from a standard eigenvalue solver (QZ algorithm). The truncation M is 
increased until the relevant eigenvalues have converged. Computations were per- 
formed in double precision (14 digits) on a Prime 750 minicomputer. For more details, 
see McLean (1981). 

4. Results 
It is well known that weakly nonlinear water waves are unstable or stable to two- 

dimensional infinitesimal perturbations if bhe depth kh is greater or less than 1.363 
(Whitham 1967). For our numerical study, we have chosen three depths, one greater 
and two less than this value. The results are presented in figures 2, 3 and 4 and ta,ble 1. 
We first discuss t,he lowest-order instability. 
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FIGURE 2. Bands of instability for d = 2.0? The labels tho point of maximum instability. 
(a) ka = 0.20, the dashed line is the resonance ciirve from the linear dispersion relation; 
( b )  ka = 0.30; (c) ka = 0.35; (d) ka = 0.39. 

For d = 2.0, the behaviour of the lowest-order instability (AT = 2) is very similar 
to the deep-water case: for small ku, the steady wave is unstable to long-wavelength 
perturbations which have a growth rate O(ka)a. Note however that the dominant 
instability at this depth is three-dimensional for small h. For steeper waves, the 
long-wavelength perturbations restabilize, and the most unstable wavenumber is 



338 J .  W .  McLea.n 

1 .o 

0 1 .o 2.0 3 .O 

FIQURE 2d. For legend see p. 337. 
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FIQURE 3. Bands of instability ford = 1.0. (a) ka = 0.20; (b) ka = 0.29. 

two-dimensional. For the range of amplitudes considered here, this lowest-order 
instability did not completely restabilize as it does in deep water. 

For d = 1.0, the unperturbed wave is stable to long-wavelength, two-dimensional 
perturbations for small amplitude, as predicted by Whitham. However, the wave is 
unstable to three-dimensional perturbations. The growth rate of the unstable side- 
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FIGUI~E 4. Bands of instability for d = 0.5. (a) ka = 0.10; (a) ka = '0.16. 
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FIG~RE 6. Maximum growth rate versus wave steepness for d = 2.0. 
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bands is O(ka)2. For kn = 0.29, two-dimensional perturbations are found to be un- 
stable, alt'hough they are dominated by three-dimensional instabilities. 

The shallowest case we have considered, d = 0-5, is most unstable (at  least for small 
ka) to a two-dimensional perturbation witah a length scale comparable to  the length 
scale of the unperturbed wave, in contrast to  the familiar two-dimensional long-wave 
perturbations which are t,he dominant instabilities in deep water. Two-dimensional 
long-wave perturbations are stable at this depth. For larger amplitudes, three- 
dimensional instabilities again dominate. 

The next-order resonance (N = 3) is completely analogous to  the deep-water case: 
the maximum growth rate occurs for p = 3, q + 0 and has Yu = O ( ~ U ) ~ ,  9 u  = 0. 
Thus the dominant inst'ability propagates with the unperturbed wave with twice the 
spatial period. The st,ability boundary at p = 4 is a point of neutral stabilit,y (a = 0), 
and suggest,s a bifurcation into a steady t,hree-dimensional wave pattern (see Saffman 
& Yuen 1980 for a discussion of deep-water bifurcation). While this t'hird-order 
resonance is initially weaker than the second-order resonance, i t  becomes dominant 
for sufficient,ly steep waves, see figure 6 and table 1. 

I n  the deep-water case it has been verified that the Nth-order resonance leads to  an 
instability with growth rate (ku)Nfor N = 2,3 ,4 ,5 .  We expect, this to be true for finite 
depth, and have verified this for N = 2 and 3. 

5. Discussion 
We have presented the results of a numerical study of the stability of steady 

periodic gravity waves for three depths. The results are similar to the deep-water 
case, but there are some interesting differences, particularly in the case of the lowest- 
order resonance. In deep water, this resonance leads to an instability with growth 
rate of order for which the most unstable perturbation is two-dimensional. For 
finite depth, the present examples show the shift to a three-dimensional perturbation, 
in agreement with perturbation analysis (Benney & Roskes 1970). We have also 
demonstrated the stabilization of two-dimensional long-wave perturbations for 
kh < 1-363 as predicted by Whitham (1967). 

For deep water, the tip of the lobe of the resonance curve (p = 2, q = 0), has been 
shown to lead to an instability of order ( k ~ ) ~  (McLean 1981). For finite depth, the 
corresponding point for q = 0, p satisfying 

[11+p1 tanhII+plh]&+[Il  -pi tanhIl-plh]l = 2[tanhh]f, 

is observed to  have a growth rate O(ku)?-, and is initially the dominant instability for 
kh = 0-5. This instability has not been obtained by perturbation met,hods, which have 
considered the case p < 1, q < 1. 

The instability associated with the next-order resonance is qualitatively similar to 
the deep-water case. In  deep water, i t  has been shown that, for ka > 0.406, the in- 
stability band touches the p-axis at p = 4, resulting in an unstable two-dimensional 
subharmonic perturbation. Although for finite depth, the stability band approaches 
thep-axis with increasing ha, the band does not reach the axis for the wave amplitudes 
considered here. In  light of the present calculations, it seems unlikely t,hat the band 
will touch the axis for Rteeper waves in t,he two shallower cases. 
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